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away) is exwremely complex, Conversely, when the mode of fluid induction is established,
then there exists the possibility of an appreciable change of the electric characteristics
of the jet with the aid of guiding surfaces inserted into the flow. Examples of such con-
trol by means of the electrical jet were investigated in [6].

The data obtained are applicable to a quantitative prediction of the effects of control
by means of the electric jet in each specific case, Let usalso point out that instead of the
parameter § sometimes it appears more convenient to introduce the value of the non-
dimensional current imposed in the entrance section,
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A system of variational equations is considered, to which nonstationary perfect
gas flows differing slightly from the self-similar ones are subject, General ex-
pressions are written for the mass, energy and momentum of the material within
the perturbed domain and the time-independent summands are extracted there-
from. The first integrals of the variational equations which are extremely sim-
ple in form correspond to these summands, The arbitrary constants are selected
in such 2 way that the boundary conditions on the front of a strong shock wave
are satisfied automatically,

1, Let us assume that the nonstationary motion of a perfect gas is caused by an ex-
plosion or the expansion of a piston. Let the equation giving the position 7, (¢, ¢, 8)
of the shock wave propagated over the initially cold gas at rest be represented for large



58 0.S.Ryzhov and E.D.Terent'ev

values of the time 7 as = (b)" (1 + et-TmODR, + ...) (1.1)
Here b is a2 dimensional constant, g, n and m are some positive numbers, where e <1,
the parameter v takes on the values 1-3 depending on the dimensionality of the prob-
lem, the quantity R, can be either constant or a furiction of the angular variables @, @,
Let vpand ». denote the components of the velocity vector normal and tangential to the
surface of strong discontinuity, p is the density, p is the pressure, % is the ratio bet-
ween the specific heats, and NV is the rate of shock wave displacement, If the state of the
gas directly ahead of the front is noted by the subscript 1 and directly behind it by the
subscript 2, then the Rankine-Hugoniot conditions become

®+1

2
~—71 P1s Py = mplNz (1.2)

2
Unz=x__‘_1N, Ut2=01 n01=

2. Let us first consider R, == const = 1. Then the solution of the probiem of gas
motion behind the shock wave (1.1) can be sought as series in decreasing powers of ¢
with coefficients which are functions of the variable A = r / (b#)". The velocity vec-
tor will have only a nonzero radial component z,, hence

by = o B () + @O L () + )
p=1 1png(xwet‘*’"“'*”‘ (A) & ] (2:4)
0™ BV R () + et by () 4 ]

The first approximation functions f, g and A4 give the characteristics of self-similar
flows for the study of which Sedov [1] indicated the general approach, The system of
ordinary differential equations governing them is contained in [2]. Substituting the ex-
pansion (2.1) into the Euler equations

dov
S ) R S 2.2)

or
P"atr"+Pvr‘;rr'+-—ap =0
dp
E+oE +p[ +(v—1)—]~0

we derive a system of three ordinary differential equations for the second approximation
functions fp,, gn and h,,.Namely

gi}f“"(f—x;_i ) - +< +v:1 g)fm
[+ 450 e =0
nv m
dl-Sp) e 2t G [ -2 -1 o
[( ) + n—i)(%-rl) f]
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xh-dd—f;"'i--!-(f——“—;il) Zn o s lixy, B tm + (2.3)

e 50 2 1o g

The initial values of these funcrions are established by using the conditions (1.2) for

A =1 _ 1 ' 2m \ | 2(v—1)x
fM‘T(4"—3“v+2)"’ %+ 1
_ 6(n—1) 2(v—1
m == T T (2-4)
_i (3n—2)u-——2n+i 2m 2(v—=1xn
A = n [ ®—1 - v-1‘—7.]+ x4+1

Using the fact that the entropy at each particle does not change after the shock wave
has passed, Lidov [3] obtained the final integral of (2, 3). 1ts natural extension is due to
Korobeinikov [4] who studied higher approximations in the small perturbations method,
Let us indicate the mode which for some values of m permits writing down other inte-
grals of the equations under consideration which correspond to the laws of gas mass, ener~
gy, and momentum conservation in the perturbed motion domain, Upon going over to
the variable A the relationship (1,1) yielding the shock front position becomes

Ay =1 + et-AwDR, L (2.3)

Let us compute the mass M (A4, A) of gas enclosed between the moving surfaces A =
A, and A = const. Let I, denote the former, and I, the latter, We have

re 2, v=1
MG, M =k§ortdr, k=12 v=2
T 4, v=3

Using the expansion (2, 1), we u'aform the expression written down as follows:

1
M (g, 1) = ZE L kp bt [> gh " lal + et <'+”(1 + >g,,.x"1 dk) +. ] (2.6)

let T =3, |J I,, then by virtue of the Rankine-Hugoniot conditions the total time
derivative of the mass of gas will be

dM (As, A .
= (azt2 ) =<§'P(Nc—vn)ds =k [PNF — o (0x — v,) 'Y
z

Here N is the rate of displacement of an element do along its normal, v, is the rate
of expansion of the inner surface X,. Evidently N, = — v, for all its points, Further-
more, we have

aM (M, b il - - v v—
——g;’—l_nkV1b 1{1—-“ 1Ag+ A" e +
-2m/ (v+ 2 __1 2 v .
ol z)[ m % xgm-i--——x 1(gfm“"fgm)]+---} 2.7

VT3 w2 w—
Let us differentiate (2, 6) and equate the relation obtained for dM (A,, A) / d¢ to the
right side of (2, 7)., The main terms proportional to f'»-1 yield

€
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1
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-

X
This equality defines the mass of gas in a volume bounded by the shock wave front and
any surface A = const in the main self-similar flow, Considering terms of order ¢
and assuming

m=1yv(v+2n
we have analogously for the variational functions

Mm — 51 (&fm + f8m) =0 (2.8)

There are no integral terms here since the second summand in (2, 6) for M (A,, A) is
independent of the time for the selected value of the exponent m It is easy to verify
that the equality (2, 8) automatically satisfies the boundary conditions (2. ¢) on the sur-
face of strong discontinuity, An arbitrary constant cpr can be introduced into this equa-
lity and given the standard form of a first integral of the ordinary differential equations
system (2. 3) by replacing the zero in its right side by cp A1~

Let us calculate the energy E (A,, A) of the mass of gas under consideration, Evi-
dently

:
®—1/

E (., k):kvg(.p_’;ﬁ_r_ P\ pigy

Substituting the expansion (2. 1) here, we find
1
Bp bR (g - ) AT dh

I3

2n2
w2 —1

E (b, b) =

1
o

gt D) [2 + >(2fgfm ~ gm - A A dk] -+ } (2.9)

On the other hand, the total derivative of the energy E (A,, A) with respect to the
time is determined as

dE (Az, 1) , pv,? |
+=<§[(N=‘vn)<‘z—*f‘f‘r>~l’”f3]d5 =
z
v 2
—ky [(v;, — Uy) (_p_z,_,_ ~+ gu—_f'{) —_ pv;‘] Pl

from which there readily follows
dE y A- 3 v n (v - v 2
0‘2 ) _ 2n - kvplb( +2) t( +2) 3{2' (f.g + h) -

at -
TETF 0 + o) 68 [0 Qg+ fgm + o) —
TV G + %) fm+ P + %h) | + -}

A comparison between the expression obtained and the equation which results from dif-
ferentiating (2, 9) yields for the first approximation functions
1

o (% 1)[(v+Z)n——2l§(f2g+h)7~""d7~=
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=2+ ) (f ~ a2kl x) + (e —1) ]

This relationship permits finding the gas energy in any domain of the initial self-similar
flow between the shock wave and the surface 4 = const. The exception is just the
case with n = 2 / (v + 2), when it is reduced to the final integral in the strong explo-
sion problem, established in [5, 6]. Now, let the exponent

m=1y(v+2)[(v+2)n—2]

when the term proportional to & in (2, 9) becomes a constant, It yields no contribution
to the derivative dE (As, A) / di , hence, we have the following integral for the varia-
tional functions

A (2fgfm + [*8m -+ hm) — (372 + #h) frn + 8m + %fh] =0 (2.10)

which automatically satisfies the conditions (2,4) on the strong shock wave front, It is
easy to verify that (2,10) continues to be a result of the system (2. 3) if the zero in its
right side is replaced by cg A!-", where the constant cgp can be selected arbitrarily.

2

®—1

3, Let us turn o seeking the integral for the functions /,,, g,,and /., which is related
to the momentum conservation law inthe perturbed flow domain, Since the momentum
is a vector, we can not consider the quantity R, from the expansions (1,1) and
(2. 5) for the shock front as independent of the angles ¢ and §; otherwise, the total
momentum of the gas would vanish, Oniy plane waves whose asymmeuy can occur even
for A; = const , are an exception,

Let us direct the z-axis of a Cartesian coordinate system along the momentumn vec-
tor, Let V denote the gas volume bounded by the expanding swrfaces X, and X in-
troduced above, The integral containing one », component of the particle velocity
yields a contribution to the total momentum [ (A,, A} ,hence

I(h, 3) = { po.av 3.1)
v
and by virtue of the Rankine-Hugoniot conditions its time-derivative is
al (h2, M) q .
g - f (ov. (No — vn) — pn.] ds (3.2)

Here n.is the projection of the unit normal on the z-axis, Formulas (3,1) and (3.2)
can be used to solve problems with any number of space dimensions, however, it is more
convenient to investigate one-, two- and three-dimensional flows separately.

For plane flows the parameteris v = 1, v, = v, and R, = const = 1. In this
simplest case '

1
L0 ) = 5 2p o™ {fg ah + o™ [1 + i(gfm +femdd] + ...} (33)

A A
Substituting the expansion. (2,1} in the equality (3,2), we find
dl (ha. 2) — 2n2 an ,2(n-1) |4 ; _ 2 2, ®—1 .
ety S SUM M€~ %1 g~ = h) ‘

ot (1 + 18m) = 5y (28T P 2T )|

Let us compare the last relationship with the expression for the derivative dl (A., A) /dt
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which can be determined by using differentiation of (3.3). We have the following equa-
tion for the principal terms:
x+1)@n—1) ¢ + o
—-—2(,,——>fgd7~=fg(f— e R )

-

which permits calculation of the momentum of a plane self-similar wave, In the excep-
tional case, n ==1/;, from which the final integral presented in [1] follows; it inter-
relates the first approximation functions, In order for the term of order & in (3, 3) to
take on 2 constant value, it is necessary to assume

=8/g (2n —1)

Under this condition the variational functions form an integral which agrees with the
initial data (2, 4) for a strong shock front

Mfm + f8m) — g 4f8fm + 2FGm + (h =) bl =0 (3.4)

Let us turn to a study of waves which have cylindrical symmetry in a first approxima-
tion; they are realized when the parameter v = 2. The total momentum of the gas
differs from zero if the quantity R, is a function of the polar angle ¢ measured from
the direction of the z-axis, Expanding R, (¢) in a Fourier series, we consider the term
with the kth harmonic, To do this, it is sufficient to assume that R, = cos (k@ -+ a),
where g, is an arbitrary constant, Instead of (2, 1), we write respectively

v, = -,;—?;‘—b“t"" [f () + &6 *f () cO8 (P + @) + . . ]

T eb" " Py (A sin (bp 4 ay) 4 . (3.5)
p= -:— T 01 (8 () + ™™g (A) cos (hp + ) + .

P = e 06" (R (A) 4 ™y () 08 (kp + 0) + . ..]

It is understood that the Euler equations (2.2) must be supplemented by terms de-
pendent on ¢ and containing a y, velocity vector component, The functions f, g and
h satisfy the previous systemn of ordinary differential equations, As regards the second-
approximation functions, we then derive the following system to determine them as a
result of substituting the expansions (3, 5) into the Euler equations:

e im (=25 S (F )it
[;,T+—,7f—~”—‘i’ii"—‘l]gm+—gum—0
g(f"u;-iw an + 25 d:;. "'[dx'*""‘iﬂ("'i""én‘)]gf'"'*‘
[(r—2Fa) g+ =520 e =0 (3.6)

g (1 — 24t r) o — 2t hm+[k f+ 2 (n—1-_gi)]gum=0

ah T (= XA S (2 X A
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[ df_*_kf_l_x—#-i(n__i___rz__)] m‘*‘x -0

The initial values of the functionsf,,,g,.and h,,do not change, they are given by (2.4)
with v = 2, On the basis of the second of the conditions (1.2), we find that the func-
tion u, =1 at the point A = 1, The scheme of the subsequent reasoning is com-
pletely analogous to that used above in studying the plane waves, The velocity compo-
nent for a selected direction of reading the angle ¢ is v, = v, cos ¢ — v, sin .

By virtue of the symmetry of the initial self-similar flow, the total gas momentum is
proportional to the small parameter €, where only terms with the first harmonic yield
a nonzero contribution to the integral (3,1)., Hence,letus take & =1 and a, =0

at once, Then

I(hg, A) =

8 b [1 + g(gfm + [8m — Guim) M d7~] +

This expression does not alter with time if the exponent
m =2(3n —1)
We find the derivative of the momentum by using (3.2). Consequently

al (A2, A) 2n3n ¥ n-2—m
OB o0 (g fm — k) —

: —1
M (2f8fm + PEm — foum + 25 b )| +
Since the total gas momentum is constant in the approximation under consideration, then

A (8fm =+ [8m — BUim) — ;—_:—_—1— [478fm + 2*8m — 2fgum + (x — 1) k] =0 (3.7)

This relationship is the first integral of the system of ordinary differential equations
(3. 6), it also satisfies the boundary conditions on the surface of strong discontinuity,

In conclusion, let us examine the momentum transfer in waves whose shape differs
slightly from the spherical, In this case the parameter v = 3. The position of the
shock wave in three-dimensional flows is given by the two angles ¢ and & of a spheri-
cal coordinate system, We shall read the angle § from the direction of the z-axis,

Let us assume that the quantity R, from the expansions (1.1) and (2. 5) can be repre-
sented as a series in the spherical functions Y;*, which by definition satisfy the follow-
ing partial differential equation [7]:

"’af; +sin ® 35 (5‘“ ® w) +1@+1)sin*8Y,* =0 (3.8)
Its solutions comsist of products of cos kg or sin kg by the associated Legendre func-
tion P,* (cos®). Taking a term with arbitrary number in 2 series of spherical functions,
let us write Ry =Y ,* (9, ). We seek the gas parameters corresponding to this shock
front perturbation as

vy = M) L et () Y (9, 9) +
oY ¥
2n l.mum (7\’) 1 _ L

%1 sin® o0 e
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2n
%+ 1

018 +et™ g ()Y F(p, B+ ...

PY"
el MR (3.9)

n-1=fym = /s
gb" " T gy (M) g -

Vg == —

% +1
VT T —1

2n? 21 (N ~3/sm » K .
p=7_£:Tp1b DA+ et R, (WY (g, )~ L. ]

Now, let us add terms containing derivatives with respect to ¢, ¥ ana the velocity
vector components ¥, Vs to the Euler equations (2, 2) in order to obtain the complete
systern of equations of gasdynamics in spherical cooddinates, Such a transformation
does not influence the determination of the functions f, g and 4 giving symmertric self-
similar flow, Upon substituting the expansions (3, 9) into the Euler squations, it is seen
first that the functions u,, and w, are solutions of the same ordinary differential equation,
The initial values of the functions f,,, g,, and %, are prescribed, as before, by (2, 4) with
v = 3. As regards the initial values of the functions u,,and w,,,they are obtained from
the condition of conservation of the tangential velocity component upon passage through
the wave shock front. This condition decomposes into two independent relations from
which it follows that u,, = 1 and w,, = 1 atthe point A = 1. As is now clear, u,,=
wpin the whole range of variation of A, The remaining four equations for the functions
frru gm' hm and Wpare

dfp ® -1 g fdg . 2
e+ (=2 h) g (FE )i

_._J_.Z_f._____m(u_—;i) ! l .
dh ' A an }gm “'.‘Tgltm=

%1 Uy, w—1 Ghy  rap wy 2m .
g<f_ ) ") o T T a T[ﬁ'*“i'r(_"—i‘”‘%—)]gfm"‘

[(f—'x::1 ")%fg:—%;(-":—i-)f]gm=0 (3.10)

T

2 p et S0

df w1 .\ SRy rgn 2 , df . 2
“h‘?;?'-i—(f——z—}»}—dr-r‘(gxﬁ-—;h)fmf[ '*‘%f—

" Let us proceed to a computation of the total gas momentum, Since the initial self-
similar flow possesses spherical symmetry, it should be on the order of e, where the non-
zero contribution to the integral (3, 1) is stipulated by terms independent of the longitude
¢. Hence %k =0, and (3. 8) is transformed into an ordinary differential equation for
the Legendre polynomials P, (cos®). If the orthogonality of the Legendre polynomials
and the equality P, (cos &) == cos{¥ are taken into account, then it is clear that we
canset . =1 and Y,° =cos © in calculating the total gas momentum, Substituting
the relationship v, = v, cos® — vgsind intlo the integral (3,1), we have

10, 8) = g epb™ #7721+ ( (g + fom — 2gwm) A2 dh] - ...

Y
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This expression remains constant for
m = 5/ 2 (4" — 1.)
As before, we find the derivative of the momentum by using (3. 2), from which

dI (2, A 8n2n n ,4n—3-
G2 — To—1y e ""’5[>~’(gfm+fgm—2gwm)-

,Hz_i l’(zfgfm+f‘gm—-2fgwm+ L h,,.)]+

For the selected value of m the derivative dJ (A,,A) / dt should vanish, The mentioned
condition results in the integral (3.11)

A (@fm + 18m — 280m) — 5 4181 m + 2F8m — 4180m + (# — 1) hm] =0
of the system (3,10), which automatically satisfies the relationships on the shock wave
front, Let us note that (3,4),(3.7) and (3,11) can be given the standard form of the
first integrals of the ordinary differential equations considered above by replacing the
zeros in their right sides by the quantities ¢y, c;A™! and c¢jA "2, respectively, where the
constant ¢; is arbitrary,

4, The integrals which are connected with the mass, energy and momentum con-
servation laws in the perturbed motion zone,are applicable to the solution of many prob-
lems of gasdynamics, Let us present two simple illustrations,

First, let a piston expand in time according to a power-law in a gas where liberation
of a finite quantity of energy occurred beforehand, It is clear that it can be taken into
account by using the expansion (2.1) with index n cotresponding to the piston motion
law, and the parameter m = 1/, (v + 2) [(v + 2) n — 2].

As a second illustration, let us consider the effect of momentum on the nonstationary
flow originating in a strong explosion, As shown in [5. 6], 2 = 2/(v 4+ 2) in the main
selfesimilar solution, As regards the exponent m governing the variational function, in
rhis case m=1 @+ 2 +1)n—1 =y

One more remark should still be made about higher approximations in the method of
perturbations. If the system of ordinary differential equations for the additional terms
with some number is homogeneous, then it possesses the integrals established above,
which retain their form completely, The reasoning is easily extended to inhomogeneous
systems also, where an independent calculation of the mass, energy, and momentum of
the gas and their time-derivatives permits taking account of the presence of right sides
in the differential equations,
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Equations of perfect fluid hydrodynamics are classified with respect to the Cori-
olis parameter, and all essentially different solutions of rank one are indicated,

1, Statement of the problem, Let z and y be Cartesian coordinates, u
and v the velocity components along the 2 and y axes, respectively, and p the pres-
sure ; the density p is assumed constant and equal unity, We consider systems of equa-
tions of the form

Uy + vUy — o = — pg, U + 0y + lu=—py, ur +v, =0 (1.1)

in which the parameter [ (y) can be an arbitrary function of y. For an arbitrary [ (y)
system (1.1) admits a certain group of wansformations G. The special forms of function
1 (y) for which the fundamental group admitted by system (1.1) is wider than G are to
be determined,

Equations (1.1) are encountered in metecrological problems in which the terms [u
and » represent components of acceleration produced by the Coriolis force owing to
the rotation of Earth, and ! (y) is the Coriolis parameter, For [ = 0 system (1,1) coin-
cides with that of the usual equations of hydrodynamics of a perfect fluid, The determi-
nation of the group for this case is given in [1] on the assumption of unsteady flow.

Besides the determination of the group of transformations we shall derive solutions of
rank one, i, e, such which reduce their derivation to the integration of ordinary differen-
tial equations, Some of these solutions were obtained earlier, for instance, in [2] solu-
tions with spiral streamlines are indicated, In the present paper the problem of group
classification of system (1. 1) is solved, optimal systems of one-parameter subgroups are
determined, and all essentially different solutions are indicated, Since the required mech~
anism of group analysis is presented in [3], many intermedjate computations are omitted,

2. Clasmsification of equations. To calculate the coordinates of the infi-
nitesimal operator of the group admitted by system (1.1) it is necessary to write out the
so=called defining equations and to solve these,

1) For any arbitrary function [ (y) the basic operators of the related Lie algebra
are of the form
X, = 8/ ap, X, =48/dx (2.1)

The analysis of determining equations for other forms of function ! (y) yields the



