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away) is exuemely  complex. Conversely, when the mode of fluid induction is established, 
then there exists the possibility of an appreciable change of the electric characteristics 
of the jet  with the aid of guiding surfaces inserted into the flow. Examples of such con- 
=ol by means of the electrical  jet  were investigated in [6]. 

The data obtained are applicable to a quantitative prediction of the effects of control 
by means of the electric jet in each specific case. Let us also point out that instead of the 
parameter  ~ sometimes it appears more convenient to introduce the value of the non- 
dimensional cu~en~ imposed in the enhance section. 
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A system of variational equations is considered, to which nonsrationary perfect 
gas flows differing slightly from the self-similar ones are subject. General ex- 
pressions are written for the mass, energy and momentum of the material  within 
the perturbed domain and the t ime-independent summands are ex~zacted there- 
from. The first integrals of the variational equatiom which are extremely s im- 
ple in form correspond to these summands. The arbilzary constants are selected 
in such a way that the boundary conditions on the front of a strong shock wave 
are satisfied automatically.  

1 .  Let us assume that the nonstationary motion of a perfect gas is caused by an ex- 
plosion or the expansion of a piston. Let the equation giving the position r2 (t, cp, ~) 
of the shock wave propagated over the initiaUy cola gas at rest be represented for large 
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values of the time t as 
r ,  = (bt)" (i + 8t-~/('+'~)R, + . . . )  (i.i) 

Here b is a dimensional constant, 8, n and vn are some positive numbers, where 8 ~ 1 ,  
the parameter v takes on the values 1 - 3  depending on the dimensionality of the prob- 
lem, the quantity Rs can be either constant or a function of the angular variables q), O. 
Let vn and v~ denote the components of the velocity vector normal and tangential to the 
surface of strong discontinuity, p is the density, p is the ixessure, x is the ratio bet- 
ween the specific heats, and N is the rate of shock wave displacement. If the state of the 
gas directly ahead of the front is noted by the subscript I and directly behind it by the 
subscript 2,  then the Rankine-Hugoniot conditions become 

2 z '-;- i 2 
v.~ = ~ N, v.~ = O, P~ = -E'L'T-- i Pl, P~ = ~ + i P~N~ (1.2) 

2.  Let us first consider Rz - -  cons t  - -  i .  Then the solution of the problem of gas 
motion behind the shock wave (1.1) can be sought as series in decreasing powers of t 
with coefficients which are functions of the variable k = r / (bt)". The velocity vec- 
tor will have only a nonzero radial component vr, hence 

2n 
v, = ~ b" t "-~ [ I  (~,) + st "~' /( '~> I,,, (~.) + ...1 

x ~ i 8t-~m I (,+spg, m p = ~ p ~  [g (~,) + (~,) + ...] (2.1) 

2n2 p~b~t zca-1) [h (X) + st -~m I (,,+,) hm (X) + --.l 
P = "E'4"i" 

The first appfox/mation functions I, g and /z give the characteristics of self-similar 
flows for the study of which Sedov [1] indicated the general approach. The system of 
ordinary differential equations governing them is contained in [2]. Substituting the ex- 
pansion (2.1) into the Euler equations 

Op OPvr 
a--i" + ar + (v -- i) pV,r = 0 (2.2) 

OPt OVr Op 
p-~-+. Pv,.~--r + ~ r  = 0  

ap ap r av, 
+ ", + "p L--w- + ( , -  i) -- o 

we derive a system of three ordinary differential equatiom for the second approx/rnation 
functions Ira, gm and bin.Namely 

2 dg 

m(~ :--' i) 

• z " ) - Z ~ T " ~  - -  ,~--Z + _ _  + 2~ \ - - t  .;~.~..,gh,,+ 

2 -~ '+  2,, I g,,, = 0 
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The initial values of these functions are established by using the conditions (I .  2) for 

--= + (  2m ) 2(~--I)× 
)~ t l , , , =  4n--3 v - 2  + ~ + i  

6 (,  - -  i) 2 (v - -  t) (2 .4)  
g'~ = 7, t-~-L--i) + × + i  

hm = 2 [ ( 3 n - - 2 ~ × - - 2 n + i  2ra ] 2 ( v - - i ) ×  
" h - '  ' x ' - i  v ' ~ Y  + × + i  

Using the fact that the entropy at each particle does not change after the shock wave 
has passed. IAdov [3] obtained the final integral of (2.3).  Its natural extension is due to 
Korobeinikov [4] who studied higher approximations in the small penurbatiom method. 
Let us indicate the mode which for some values of m permits writing down other inte- 
grals of the equations under consideration which correspond to the laws of gas mass, ener- 
gy, and momentum conservation in the perturbed motion domain. Upon going over to 
the variable )~ the relationship (I .  I )  yielding the shock front position becomes 

~ = i + ~ t - " / ( ' + 2 ) B ,  + . . .  (2 .5)  

Let US compute the mass M (~,,, ~) of  gas enclosed between the moving surfaces ~, - -  
~: and ~. - -  cons t .  Let Y. 2 denote the formeL and Y. x the latter. We have 

r, ( 2 , v = i  

M (~ ,  ~.) = k~ I pr~-x dr,  k, = } 2a, v = 2 

Using the expansion (2. !) ,  we transform the expression written down as follows : 
1 1 

ti, + 
~ p z b  ~ t ~" 8t - ' n  /('+:)(t 

Let ~ ---- ~: U ~ x, then by virtue of the Rankine-Hugoniot conditions the total t ime 
derivative of the mass of gas will be 

dM (~2, ~) 
dt = ~ p (N~ - -  v~) do = k~ [plNr~ -1 - -  p (vx - -  vr) r "-x] 

Here Na  is the rate of  displacement of  an e lement  do  along its normal, vx is the rate 
of  expansion of  the inner surface ]~ ~. Evidently j~r = - -  vx for all  its points. Further- 
more, we have 

dM (M, ~.) --_ nk~p,b*" t ""-~ { 1 u -= t 
a, 7-'L'i ~"g + ~ ~/-~lg + 

[ 2m z - - '  " ~ ] ~' (2.7) 8t-2ml 0+2) ~ 
(+ + z) x -  i ~ g "  + _ ;~.-x (gl,,, ~ l g . )  + ..~ 

Let us differentiate (2.6) and equate the relation obtained for d M  (~,)~)  / dt to the 
right side o f (2 .7 ) .  The main terms proportional to t~n-x yield 
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1 

- - - - - -  . ~ k~-I I-- 2 / g  
k 

This equality defines the mass of gas in a volume bounded by the shock wave front and 
any suzface ~ . . ~  eonst  in the main self-similar flow. Considering terms of order 
and anuming 

m ----1/3v(v ÷ 2) a 

we have analogously for the variational functions 
2 ~ .  - ~ + ~ ( g / .  ÷ / g . )  = o (2 .8)  

There are no integral terms here since the second summand in (2.6) for M (~-2, ~) is 
independent of the time for the selected value of the exponent rn It is easy to verif,/ 
that the equality (2. 8) automatically satisfie~ the boundary conditions (2.4) on the sur- 
face of strong discontinuity. An arbitrary constant cM can be introduced into this equa- 
lity and given the standard form of a first integral of the ordinary differential equations 
system (2.3) by replacing the zero in itl right side by cM ~i-~ 

Let us calculate the energy E (~.~, X) of the mass of gas under consideration. Evi- 
dently 

E (~'2, ~) -~- k~ i "p : × - - l '  P " r~-l"dr 
r 

Substituting the expansion (2.1) here. we:find 
1 

2n 2 -- AC*.~)rt +(v+2)n-a ' h )  k ~-l" d~, ÷ 
E ( ~ ,  L) = ~ t c ,  plv ~ { i ( / 2 g - r "  

), 

1 

On the other hand, the total derivative of the energy E (X2, k)  with respect to the 
time is determined as 

2 " . - -_~ - - p N ~  d~ = 

from which there readily follows 

dE (X2, k) 2n~ { 
dt "= x2 -------q k'pxb('+z)'~ti'+#)'~-a ~'" ( f g  ÷ h) - -  

2 ~.-x t (12g ÷ zh) ÷ 8t -2"/(.+2) I~, (2 /g l , .  ÷ / ~ g , .  ÷ h . )  - -  ×-hi  
2 ((3i'g + + r g .  + +...} 

A comparison between the expression obtained and the equation which results from dif- 
ferentiating (2.9) yields for the first approximation fimctiom 

1 

1 (x + t) [(~ 4- 2) n - -  21 ( f g  + h) L "-~ d~. = 
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This relationship permi~ finding the gas energy in any domain of the initial self-similar 
flow between the shock wave and the surface ~. --~ const .  The exception is just the 
case with n ~ 2 / (~ -~- 2), when it is reduced to the final integral in the sl~ong explo- 
sion lxoblem, established in [5. 6]. Now, let the exponent 

m = 1/s(v + 2) [(v + 2) n - -  2] 

when ~he term ]xopor~onal to e in (2. 9) becomes a constant. It yields no conmbuUon 
to the derivative dE (~.s, ~-) / d t ,  hence, we have the following integral for the varia- 
tional functions ,) 

~. (2/g/,n ÷ f ' g~  -;- h~) × , i [(31'g + ×h)/m ÷ f3g.~ ÷ ×/hm] = 0 (2.10) 

which automaticaUy satisfies the conditions (2. 4) on the strong shock wave front. It is 
easy to verify that (2.10) continues to be a result of the system (2.3) if the zero in its 
right side is replaced by cE ~z-~, where the comtant cE can be selected arbitrarily. 

$.  Let us turn,to seeking the integralfor the funct iom/~,  gmand hmwhich is related 
to the momentum cormervation law inFoe pertt:bed flow domain. Since the momentum 
is a r e c u r ,  we can not consider the quantity R2 from the expansiom (1 .1)and  
(2.5) for the shock fon t  as independent of the angles ~ and 0 ; otherwise, the total 
momentum of uhe gas would vanish. Only plane waves whose asymmetry can occur even 
for R2 ----- c o n s t ,  are an exception. 

Let m direct the z-axis of a Cartesian coordinate sysmm along the momentum vec- 
tor. Let V denote the gas volume bounded by the expanding surfaces Y 2 and ]~ ~. in° 
troduced above. The inte~al  containing one y: component of the particle velocity 
yields a contribution to the total momentum I (~ ,  ~.~ , hence 

I (7.:, ~.) = ~ or: 4 v  (3.i) 
V 

and by virtue of the Rankine-Hugoniot conditions its time-derivative is 

dl B2. 
= ~ [pv.. (No --  ~ )  --  pn.j  dz (3.2) 

dt 

Here n :  is the pcojection of the unit normal on the z-axis.  Formulas (3. I )  and (3.2) 
can be used to solve problems with any number of space dimensions, however, it is more 
convenient to investigate one-, two- and three-dimensional flows separately. 

For plane flows the parameter is v --  i ,  vz ---- vr and R¢ ----- c0nst  ----- I .  In this 
simplest case ~ 
I(L,, i~) = 2n 

. } 
k .,, 

Substituting the expansion.(2.1) in the equality (3. 2), we find 

dI(~,.,,).) 2n -~ { 2 (  × - - 1  1 

~t-'"m ;~ (g lm --, Ig,~) z + i g/,n =- /~g ,n  , 

Let us compare the last relationship with the expression for the derivative dI  (;%, ~) ~dr 
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which can be detenuined by using differentiation of (3.3). We have the following equa-  
tion for the principal terms: 

1 

2.~ .tg d~ = l g  ! 2 .~ 

which permils calculation of the momentum of a plane self-similar wave. In the excep-  
zional c u e ,  n = I/2, from which the final in le~a l  ixesenled in [1] follows ; it inmr- 
relam~ the t in t  approximation functions. In order for the term of order e in (3.3) to 
take on a comumt value, it is neceuary to assume 

m = s / ,  (2n - -  I) 

Under this condition the variational flmctiom form an inmgral which agrees with the 
initial data (2, 4) for a s~ong shock front 

i 
(f/,~ +/g~,) ~ ÷ ~ [4/gf,~ + 2/2g~, + (~ - i) h~] = 0 (3.4) 

Let m tlu'n to a study of waves which have cylindrical symmen 7 in a first apptoxima- 
zion; they are mal ised  when the paramezer ~ == 2. The total momentum of the gas 
differs from zero if the quantity ]~l is a function of the polar angle q) meastu~d from 
the dL-ection of the z -ax i s .  Expanding R.. (q~) in a Fourier series, we comider the lerm 
with the kth  harmonic. To do fills, it is sufficient to anume that R l == COS (kcp -~- ak), 
where a ,  is an arbil~ary comtant. Immad of (2. I) ,  we write respectively 

2n b"t  "-1 v, = ,, + 1 It (~) + st-"/~1,,,  (~,) cos (k~ + ~,) + . . . l  

2. ~-tn-l-ml2um ... 
~'~ = ~ + i (~.) s i n  ( k ~  + ~,~) + (3 .5)  

u 4 - 1  
P = x ---T Pl [g (~,) + ~t-~12g~ (~,) cos (kcp + %) -+- . . . ]  

2.2 p l b ~  t~._x~ P = x "I- t [h (~,) + et-~12h,a (X)cos (kcp + %) -t- . . . ]  

It is understood that the guler equations (2.2) must be supplemenmd by terms de-  
pendent on ~ and containing a % velocity vector component, The functions ],  g and 
h satisfy me previous sysmm of ordinary differential equations. As regas~Is the second- 
al~mxlmation functions, we then derive the following ~/srem to determine them as a 

result of substituting the expamiom (3. 5) in¢o the Euler equations: 

4,.-_0 
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x - ~  + ~ ] + ~_._~l n - -  i - -  h,~ + hu, ,  = 0 

The initial values of the functionsfm,gmand hmdo not change, they are given by (2.4) 
with v = 2. On the basis of the second of the conditions (I. 2), we find that the func- 

tion Urn = i at the point ~ = I. The scheme of the subsequent reasoning is com- 
pletely analogous to that used above in studying the plane waves. The velocity compo- 
nent for a selected direction of reading the angle ¢p is vz = v, cos q) - -  v® s in  q~. 
By virtue of the symmetry of the initial self-similar flow, the total gas momentum is 
proportional to the small parameter s, where only terms with the first harmonic yield 
a nonzero contribution to the integral ( 3 . 1 ) .  Hence, let us take k ~--- t and a~ = 0 
at once. Then 1 

2r (~., ~.) = 2n~ splb~ntan-x-ml' [~ I (gf,n _4_ fg m gum) ~.d~.] ..~, 
), 

This expression does not alter with t ime if the exponent 

m ---- 2 (3n - -  3) 

We find the derivative of the momentum by using (3.2). Consequently 

dl (~, Z) 2n~t 8f) lb3~t/3n-2--~tl 
I ),s (g/m + / g ~  - -  ~ . , )  - -  dt ----- x - -  i 

,--h-, + + + .. .  

Since the total gas momentum is constant in the approximation under consideration, then 

7,(g/,~+/g,~--gu,~) x + i  [ 4 / g / ~ + 2 P g , , - - 2 / g u , , + ( x - - i ) h ~ l  = 0  (3.7) 

This relationship is the first integral of the system of ordinary differential equations 
(3.6), it also satisfies the boundary conditions on the surface of strong discontinuity. 

In conclusion, let us examine the momentum transfer in waves whose shape differs 
slightly from the spherical. In this case the parameter v = 3. The Position of the 
shock wave in three-dimensional flows is given by the two angles q) and 0 of a spheri- 
cal coocdinate system. We shall read the angle @ from the direction of the z-axis. 

Let us assume that the quantity Rs from the expansions (1.1) and (2.5) can be relxe- 
sented as a series in the spherical functions Yl ~, which by definition satisfy the follow- 
ing partial differential equation [7]: 

a 'Yl  ~ a ( aYz k \ 
a~p" + s i n # ~ , s i n ~ - - - a b - - ) + l ( l + i ) s i n 2 f i Y ~ = 0  (3.8) 

Its solutions consist of l~OdUCtS of cos kcp or sin kcp by the associated Legendre func- 

tion P ~  (cosO) .  Taking a term with arbitrary number in a series of spherical functions, 
let us write ~ = Yz ~ (¢p, 0 ) .  We seek the gas parameters corresponding to this shock 
front perturbation as 

2n 
v~ = r.'W.-.-.-.-.-.-.-_~T b"t'~-~ t/(P,) + ~t"' '"l~ Q.) Y ~  (¢., O) + . . . 1  

2n t ~Yl  ~" 
V~ = × + i ~Onln-~-s/tmU'n (~') sin 0 bY ~ "" " 
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2,~ eb'~t '~-l-~l'm w,~ (k) - ~  (3.9) 
va---- ~ i  ' " '"  

9 --- ./.----i p: [g (k) ÷ et-'/°mg,,~ ().) Y/:  (~, ~) ÷ ...] 

2nZ ~, ~2n +2(n-1) p = ~ ~.~v . [h 9,) ÷ 8V~"~ h,= (7,) Y / ( %  ~ ) ,  . . . ]  

Now, let m add terms contaimng aerivatives with respect to % ~ ann the velocity 
vector components re, v~ to the Euler equations (2.2) in order to obtain the complete 
system of equations of gasdynami¢~ in spherical coc~dinate~. Such a tramformation 
does not influence the determination of the ftmctiom /, g and h giving symmetric self- 
similar flow. Upon substituting the expansions (3. 9) into the Euler equations, it is seen 
f iat  that the functions Urn and Wm axe solutions of the same ordinary differential equation. 
The initial values of the functions Ira, gm and hrnare prescribed, as before, by (2.4) with 
v ~ 3. As regards the initial values of the functions umand win,they am obtained f~om 

the condition of conservation of the tangential velocity component upon passage through 
the wave shock front. This condition decomposes into two independent relations from 
which it follows that u~: == i and w m ----- i at the point ~, --~ i .  As is now clear, urn.= 

wrnin the whole range of variation of ~.. The remaining four equations for the functions 
/ m ,  grn, hm and wmare  

[ d ,  , 2 ~ ( z = i ) ]  , 
"~- :"  "Z" ! - -  5,~ g'~ : -  -W g~"~ = 0 

2 X - . 7 - £ - = -  2 d~, + 7":£ + ~  n - - i - -  g I , , , +  

. ~ -:- 2n g,,, = 0 (3.10) 

( ]  x ÷ t . du'm - - - -~ -"  ~ ) - 7 ~  x - - i  h~ - i - I +  / ÷ x4-i  / n  g 
2,, 2n ,. - -  t - -  / j g w  ,,  ~ 0 

,~ n - -  i - -  h~, ÷ hw.~ = 0 

Let us pcoceed to a computation of the total gas momentum. Since the initial selfo 
similar flow possesses spherical symmetry, it should he on the order of e, where the non° 
zero contribution to the integral (3.1) is stipulated by terms independent of the longitude 
cp. Hence k ----- 0, and (3. 8) is transformed into an ordinary differential equation for 
the Legendre polynomials Pz (cos 0). If  the orthogonality of the Legendre polynomials 
and the equality ,D: (cos ~ )  ~ co$~ are taken into account, then it is clear that we 
can set ~ ~ t and y 0  ~_ COS 0 in calculating the total gas momentum. Substitutin~ 
the relationship v z ~ vr cosO ~ Va $inO into the integral (3.1), we have 

1 

i Q,~, ~,) = Sn~ sp~b,.t, .-,-~m/~[l+ i(g/m+/g,~__2gw,.)X.d~.]_=.. .  
3 (x--  t) 
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This expression remains constant for 

= 61~ ( 4 n  - -  I )  

As before, we find the derivative of the momentum by using (3. 2), from which 

dI (M, ~.) 8.%l [ 
,~t = - -  ~ s p z b "  t ' ' - s - ~  / ~ ,.~> (g / , , ,  + l g ,  n - -  2gw,, ,)  - -  

2 / V'I 

x + I  
i i i 

For the selected value of m the derivative d l  (~3,,~) I ~ should vanish. The mentioned 
condition results in the integral (3 . t i }  

t 
(gl,,, + lgm - 2gw~) ~ + ~ [4 lg l , , ,  + 2t~gm - -  4lg'u'~ + (x - -  i )  hml = 0 

of the system (3. I0),  which automatical ly satisfies the relationships on the shock wave 
front. Let us note that (3.4), (3. 7) and (3.11) can be given the standard form of the 
first integrals of the ordinary differential equatiom considered above by replacing the 
zeros in their right sides by the quantities el, ez~. -z and ci~, -~, respectively, where the 
constant ez is arbitrary. 

4 .  The integrals which are connected wltb the mass, energy and momentum con- 
servation laws in the perturbed motion zone,are applicable to the solution of maw/p rob -  
terns of gasdynamics. Let us present two simple illusWations. 

First, let a piston expand in t ime according to a powez.-law in a gas where liberation 
of a fl~[te quanti~ of energy occt~red beforehand. It is clear that it can be taken into 
account by using the expansion (2. I )  with index n cocresponding to the piston morion 
law, and the parameter m = Uo (y 4- 2) [(v -f- 2) n - -  2]. 

As a second illustration, let us consider the effect of momentum on the nonstaUonar/ 
flow originating in a strong explcmion. As shown in [5~ 6], tt = 2/(~ + 2) in the main 
self-similar solution. As regards the exponent m governing the variational function, in 
this case 

m=112(v 4- 2)[(v 4-1) n--l] =I12v 

One more •mark should still be made about higher approximations in the method of 
perturbations. If the system of ordinary differential equations for the additional terms 
with some number is homogeneous, then it possesses ~ e  integrals established above, 
which retain their form comptemly. The reasoning is easily extended to inhomogeneous 
systems also, where an independent calculation of the mass, energy, and momenvarn of 
the gas and their t ime-derivatives permits taking account of the presence of right sides 
in the differential equations. 
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Equatiom of perfect fluid hydrodynamics are classified with respect to the Cori- 
ol/s parameter, and all essentially different solutiom of rank one are indicated. 

1 .  S t & t a m l n ~  o f  t h e  p r o b l e m .  Let x and y be Car~..sian coordinare~, u 
and v the velocity components along the x and y axes, respectively, and p the pres- 
sure ; the density p is assumed comrmnt and equal unity. We consider systems of equa- 
tiom of the form 

uu, ,  + v r t y - -  l v  ---- - -  p~:, t tv~ + ~ , ,  + t t t  = - -  p v ,  ~ + v v - - - - O  (1.1) 

in which the parameter l (y) can be an arbitrary function of ~/. For an arbitrary I (y) 
system (1.1) admits a certain group of transformatiom G. The special forms of hmction 
Z (y) for which the fundamental group admitted by system (1.1) is wider than G are to 
be determined. 

Equations ( I .  I) are encountered in meteorological p~oblerm in which the terms lu 

and lo represent components of acceleration produced by the Coriol/s force owing to 
the rotation of Ear~, and I (y) is the Coriol/s parameter. For I = 0 ~Tstem (I .  1) coin- 
cides with that of the mual equations of hydrodynamics o f  a perfect fluid. The determi- 
nation of the group for this case is given in [ I ]  on the assumption of um~ady flow. 

Besides the determination of the group of transformations we shall derive solutions of 
rank one, k e. such which reduce their derivation to the integration of ordinary differen- 
tial equations. Some of these solutiom were obtained earlier, for instance, in [2] solu- 
tions with spiral su~amlines are indicated. In the present paper the l~oblem of group 
cla.~iflcation of system (I .  1) is solved, optimal systems of one-parameter sub~oups are 
de~nulned,  and all essentially different solutions are indicated. Since the required mech- 
anism of group analysis is presented in [3], many i n . m e d i a t e  computations are omitted. 

~.  C l a u i f i o a t i o n  o f  ~ q u a t i o n | .  To calculate the coordinates of rbe  infi- 
nitesimal operator of the group admitted by system (I .  1) it is necessary to wrim out the 
so-called defining equations and to solve these.  

1) For any arbitrary function ~ (y) the basic operators of the related Lie algebra 
are of the form 

X~ ---- 8 / ap, X= = 0 1 0 z  (2 . i )  

The analysis of determining equations for other forms of function l (.y) yields the 


